GENERALIZED JORDAN DERIVATIONS ON SEMIPRIME RINGS
نویسندگان
چکیده
منابع مشابه
Generalized Jordan Triple Higher ∗−Derivations on Semiprime Rings
Let R be an associative ring not necessarily with identity element. For any x, y ∈ R. Recall that R is prime if xRy = 0 implies x = 0 or y = 0, and is semiprime if xRx = 0 implies x = 0. Given an integer n ≥ 2, R is said to be n−torsion free if for x ∈ R, nx = 0 implies x = 0.An additive mapping d : R → R is called a derivation if d(xy) = d(x)y + yd(x) holds for all x, y ∈ R, and it is called a...
متن کاملOn Generalized Derivations of Semiprime Rings
Let F be a commuting generalized derivation, with associated derivation d, on a semiprime ring R. We show that d(x)[y, z] = 0 for all x, y, z ∈ R and d is central. We define and characterize dependent elements of F and investigate a decomposition of R relative to F . Mathematics Subject Classification: 16N60, 16W25
متن کاملA Note on Jordan∗− Derivations in Semiprime Rings with Involution
In this paper we prove the following result. Let R be a 6−torsion free semiprime ∗−ring and let D : R → R be an additive mapping satisfying the relation D(xyx) = D(x)y∗x∗ + xD(y)x∗ + xyD(x), for all pairs x, y ∈ R. In this case D is a Jordan ∗−derivation. Mathematics Subject Classification: 16W10, 39B05
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Australian Mathematical Society
سال: 2019
ISSN: 1446-7887,1446-8107
DOI: 10.1017/s1446788719000259